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Energy Calibration
Cosmic Muon Data and MC

Relative Calibration
• Attenuation along 

length of a given cell 
• Cosmic Muon 

Sample
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PE
Photoelectrons

PECorr
Corrected

GeV
Energy Deposited

Rescaling of ADC 
to approximate 
photoelectrons

Effective PE with 
all relative effects 
calibrated out

Energy deposited by 
each hit

Absolute Calibration
• Energy Scale Factor  

(GeV/PECorr) 
• Stopping Cosmic 

Muon Sample

Outline:



Attenuation of Scintillation Light
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Cosmic Caveats
“Tricell” Hit Selection

• Tricell Criteria: Well known hit length
- require tricell hits to be between 2 

other hits in the same plane of cells 

• Vertical Cell (X) View Hits
- Cosmics: longer, higher-PE, fewer 

• Horizontal Cell (Y) View Hits
- Cosmics: shorter, lower-PE, more 

• Threshold
- hits < ~25 PE not seen by readout. 

• Shielding
- Average true energy changes with 

vertical position 

• Path length scales Energy deposition, 
so the basic unit of calibration is 
Uncalibrated Response: PE/cm
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Cosmics

Beam 
Events

View: X         Y          X

path length = Ly / cy



Relative Calibration

• Depends on: Cell and longitudinal position in cell, W
✴ Fit PE/cm attenuation profiles for each cell

• Bias in cosmic muon sample must be corrected before attenuation fit — 
threshold, shielding 

• Threshold/Shielding Correction depends on Cell, W (MC) 
- PE is poisson distributed 
- PE/cm vs W for each cell, look at Etrue/EMIP 

• Attenuation Correction: perform fit on threshold-and-shielding 
corrected PE/cm vs W plots 
✴ Fit for every cell in every plane
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Correct hits to a unit which is  
uniformly comparable throughout the detector, 

and proportional to energy deposition
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1. Neutrino Physics

Nuclear beta decay experiments in the first two decades of the 1900s flirted with the
idea of violating conservation of both energy and angular momentum; the kinetic energy
of the observed decay products was a wide, continuous distribution, while expected to be
an extremely narrow distribution peaked at the energy di↵erence between the initial and
final nuclear state. Wolfgang Pauli in 1930 suggested the missing energy and angular
momentum was actually conserved in a neutral, spin-1/2 particle which left detectors
undetected. Within a few years, Enrico Fermi had named that particle the “neutrino”
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For a hit to be seen above threshold, the energy deposited may need 
to be an upwards fluctuation within the underlying Landau distribution
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Hit Threshold

• Short MIP hits are impacted the most — Horizontal Y View 
✴ Especially hits which have attenuated 

• Different cells throughout the detector affected to a different 
degree

Different hit efficiencies 
introduce threshold bias 
in different cells  

—> Cell Bias

Attenuation introduces 
threshold bias varying 
with W —> W Bias



Detector Shielding

• Hits at the top of the detector tend to be further from track “end” 

• The true dE/dx is not uniform throughout the detector 
✴ lower parts of detector shielded by top 

• Folds into impact of threshold since lower-dE/dx areas tend closer 
to threshold (bottom horizontal cells) 7

cosmic muons

  Energy Deposition is not uniform throughout the detector   



Relative Correction Factors
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PECorr/cm

Absolute Calibration

Flat
Region

• Select Stopping Muons

• Tighten dE/dx peaks by selecting hits 
in the Bethe-Bloch flat region 

• MC: True dE/dx and Response 

• Data: Response (PECorr/cm)
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Nuclear beta decay experiments in the first two decades of the 1900s flirted with the
idea of violating conservation of both energy and angular momentum; the kinetic energy
of the observed decay products was a wide, continuous distribution, while expected to be
an extremely narrow distribution peaked at the energy di↵erence between the initial and
final nuclear state. Wolfgang Pauli in 1930 suggested the missing energy and angular
momentum was actually conserved in a neutral, spin-1/2 particle which left detectors
undetected. Within a few years, Enrico Fermi had named that particle the “neutrino”
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• Threshold means selected hits were more likely to be up-
fluctuations in true energy deposition 
• Select only flat region of W so Energy scale is not biased  

• Horizontal Y View has many more hits, calibrate separately 
and average
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Absolute Calibration

Far Detector
Hit Efficiency

Distance From Center (cm)
-500 0 500

Ef
fic

ie
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

Vertical Cells

Horizontal Cells

A PreliminaryνNO



Verification with MC
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 2.9 MeV± 134.2: µData 
 2.1 MeV±:   50.9 σData 
 0.6 MeV± 136.3:   µMC 
 0.7 MeV±:     47.0 σMC 

• Profile Ratio of Reconstructed over 
True Energy 
✴ Energy Scale: average vertical 

deviation from 1 
✴ Relative Calibration: shape 

along W, cell, plane 

• Pi-Zero Mass Peak 
• Muon/Proton dE/dx 
• Michel Electron Spectrum
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Far Detector

Near Detector



• Full chain of correction factors to take measured PE to a best 
estimate of energy deposited, GeV 

• Scintillation Light attenuates to different degrees in each cell 
✴ Fit a curve to PE/cm response for each cell: attenuation 

correction factor 

• Need to remove bias from the cosmic muon sample before 
calibrating 
✴ Threshold and Shielding Effects 

• Do not let threshold effects bias the absolute energy scale 
✴ <MeV / cm> / <PECorr / cm> 

• Ongoing Work 
✴ Threshold & Correction Factor with data instead of MC 
✴ Rigorous understanding of systematic uncertainty
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Takeaway Points



Backup
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• PE: Simulated photoelectrons at the readout 

• 𝝺: number of simulated photons expected at readout in the 
absence of fluctuations (PE is Poisson distributed) 

• Etrue: True energy deposited in cell 
• EMIP: Path length * dE/dx of minimum ionising particle
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1. Neutrino Physics

Nuclear beta decay experiments in the first two decades of the 1900s flirted with the
idea of violating conservation of both energy and angular momentum; the kinetic energy
of the observed decay products was a wide, continuous distribution, while expected to be
an extremely narrow distribution peaked at the energy di↵erence between the initial and
final nuclear state. Wolfgang Pauli in 1930 suggested the missing energy and angular
momentum was actually conserved in a neutral, spin-1/2 particle which left detectors
undetected. Within a few years, Enrico Fermi had named that particle the “neutrino”
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Combined Threshold & Shielding Correction

Threshold Shileding

• Fill Cell x W plots with each MC Tricell hit from Cosmic 
Muons 

• Empirical polynomial fit to resulting plot: Final Correction
14



NuMu-disappearance
1𝜎 Uncertainty 
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• NOvA 2015—>2016 
- Improvement mostly 

statistical 

• Impact of Calibration 
systematic uncertainty 
increasing with 
statistics
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